8n^2-4=5332

Simple and best practice solution for 8n^2-4=5332 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8n^2-4=5332 equation:



8n^2-4=5332
We move all terms to the left:
8n^2-4-(5332)=0
We add all the numbers together, and all the variables
8n^2-5336=0
a = 8; b = 0; c = -5336;
Δ = b2-4ac
Δ = 02-4·8·(-5336)
Δ = 170752
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{170752}=\sqrt{256*667}=\sqrt{256}*\sqrt{667}=16\sqrt{667}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{667}}{2*8}=\frac{0-16\sqrt{667}}{16} =-\frac{16\sqrt{667}}{16} =-\sqrt{667} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{667}}{2*8}=\frac{0+16\sqrt{667}}{16} =\frac{16\sqrt{667}}{16} =\sqrt{667} $

See similar equations:

| 3x²+13x+10=0 | | -9y-2(y+12)=4y-15y | | 5x=1+6x-3 | | 7x^2-5=35 | | -3(n+2)=-4n | | 3x^+8x-1=0 | | 2890=n/15 | | 14-2x=-4x+12 | | -8/2+3=y | | 2x²-9x+7=0 | | 21+3(n+)=0 | | b/12=5;=60 | | 190=(9.5)(75)+x | | 7(y-3)/2=-4y | | 5(x+6)/3=3x-2 | | 3(8-2(-5x-5))=30x+54 | | 3×1+7=x | | 4(x+8)+8=40 | | 11+12x=4(3x+4)-5 | | -5x+10-5=5-7x | | 2w-3=0 | | 8x-3x-2=5x | | 3+12x=4(3x+4)-13 | | -5/2+5/4=(5/3)x-(2/5)x | | 2r+56=180 | | 2(-9+12x)=8+3x | | Y=30+15x | | 120=8(1+2n) | | -14+52x=714 | | 10×q=4.9292 | | 7x+16=9x+2 | | 9z+9-7z=1+z+7 |

Equations solver categories